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Abstract In this paper a numerical method consists of combining Haar basis method
and Tikhonov regularization method for solving some ill-posed inverse problems using
noisy data is presented. By using a sensor located at a point inside the body and mea-
suring the u(x, t) ata pointx = a, 0 < a < 1, and applying Haar basis method to the
inverse problem, we determine a stable numerical solution to this problem. Results
show that an excellent estimation on the unknown functions of the inverse problem
can be obtained within a couple of minutes CPU time at pentium I1V-2.4 GHz PC.
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1 Introduction

Inverse problems appear in many important scientific and technological fields. Hence
analysis, design implementation and testing of inverse algorithms are also are great
scientific and technological interest.
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Mathematically, the inverse problems belong to the class of problems called the ill-
posed problems, i.e. small errors in the measured data can lead to large deviations in
the estimated quantities. As a consequence, their solution does not satisfy the general
requirement of existence, uniqueness, and stability under small changes to the input
data. To overcome such difficulties, a variety of techniques for solving inverse prob-
lems have been proposed [1-6, 14,15,19,20,22-26,30] and among the most versatile
methods the following can be mentioned: Tikhonov regularization [28], iterative reg-
ularization [2], mollification [20], BFM (Base Function Method) [23], SFDM (Semi
Finite Difference Method) [19], and the FSM (Function Specification Method) [3].

Beck and Murio [5] presented a new method that combines the function speci-
fication method of Beck with the regularization technique of Tikhonov. Murio and
Paloschi [21] propose a combined procedure based on a data filtering interpretation
of the mollification method and FSM. Beck et al. [3] compare the FSM, the Tikhonov
regularization and the iterative regularization, using experimental data.

Zhou et al. [30] investigated the inverse heat conduction problem in a one-
dimensional composite slab with rate-dependent pyrolysis chemical reaction and out-
gassing flow effects using the iterative regularization approach. They considered the
thermal properties of the temperature-dependent composites.

Huanga et al. [15] applied an iterative regularization method based inverse algo-
rithm in the present study in simultaneously determining the unknown temperature
and concentration-dependent heat and mass production rates for a chemically reacting
fluid by using interior measurements of temperature and concentration.

Haar functions, [12], have been used from 1910 when they were introduced by
the Hungarian mathematician Haar [11]. The Haar transform is one of the earliest of
what is known now as a compact, dyadic, orthonormal wavelet transform. The Haar
function, being an odd rectangular pulse pair, is the simplest and oldest orthonormal
wavelet with compact support. In the mean time, several definitions of the Haar func-
tions and various generalizations have been published and used. They were intended
to adopt this concept to some practical applications as well as to extend its in appli-
cations to different classes of signals. Haar functions appear very attractive in many
applications as for example, image coding, edge extraction and binary logic design.

Recently, Haar wavelets, [12], have been applied extensively for signal processing
in communications and physics research, and have proved to be a wonderful mathe-
matical tool. After discretizing the differential equations in a conventional way like
the finite difference approximation, wavelets can be used for algebraic manipulations
in the system of equations obtained which lead to better condition number of the
resulting system.

The previous work, [12], in the system analysis via Haar wavelets was led by Chen
and Hsiao [7], who first derived a Haar operational matrix for the integrals of the
Haar functions vector and put the application for the Haar analysis into the dynamical
systems. Then, the pioneer work in state analysis of linear time delayed systems via
Haar wavelets was laid down by Hsiao [13], who first proposed a Haar product matrix
and a coefficient matrix. Hsiao and Wang proposed a key idea to transform the time-
varying function and its product with states into a Haar product matrix. Kalpana and
Balachandar [16] presented Haar basis method of analysis for observer design in the
generalized state space or singular system of transistor circuits.
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The plan of this paper is as follows. In Sect. 2, we formulate and solve an inverse
problem for the heat equation. In addition, a solution of an inverse problem for the
wave equation will be discussed. To regularize the resultant ill-conditioned linear sys-
tem of equations, we apply the Tikhonov regularization (of Oth, 1st and 2nd orders)
method to obtain the stable numerical approximation of our solution. Finally some
numerical results will be given in Sect. 3.

2 Main results

Definition 2.1 The Haar wavelet family for x € [0, 1) is defined as follows, [12],

I, xe [g k+0‘5)’

m’ m
h: = k+0.5 k+1
i(x) -1, XE[T’T)’
0, elsewhere.
Integer m = 27, (j = 0,1,...,J) indicates the level of the wavelet; k =
0,1,...,m — 1 is the translation parameter. Maximal level of resolution is J. The

index i is calculated by i = m + k + 1; in the case of minimal valuesm = 1,k =0
we have i = 2, the maximal value of i isi = 277! = M. It is assumed that the value
i = 1 corresponds to the scaling function for which 41 = 1 in [0, 1). Let us define
the collocation point x; = %, (I=1,2,..., M) and discretize the Haar functions
h;(x). In this way we get the coefficient matrix H and the operational matrices of
integration P and Q, which are M-square matrices, are defined by the equations

(H)ii = (hi(x1)), 2.1
By
(PH)j; =/hi(x) dx, 2.2)
0
X X
(OH)j; =//hi(s)dsdx. 2.3)
0 0

The elements of the matrices H, P and Q can be evaluated by (2.1), (2.2) and (2.3).
For example when M = 2, 4 we have,

11 1 (2 -1 1 (5 -4
Hz_(l—l)’Pz_Z(l0)’Q2_§(4—3)’
11 1 1 8 —4-2-2
11 —1-1 1 {40 —22
Hy = 1—100’P4_R1100’
00 1 —1 1-10 0
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21 —16 —4 —12

1 1611 —4 —4
Q4“I§§ 6 -2 -3 0
2 -2 0 -3

Remark 1 Any function f € L2([O, 1)) can be decomposed as, [12],

0]

)= cnhn(), 2.4)

n=1

where the coefficients ¢, are determined by
1
o =2 [ F@hy)ax.
0

wheren =2/ +k, j >0,0<k <2/

We should note by Remark 1 that if f(x) is piecewise constant by itself, or may
be approximated as piecewise constant during each subinterval, then f(x) will be
terminated at finite terms, that is,

M

F) = eahn(x) = Cly Hy (), @5)

n=1

where the coefficients CAT,I and the Haar function vector Hy;(x) are defined as,

Hy () = (h1(x) ha(x) ... hy ()",

C;,Iz(cl cz...cM),

where ‘T’ means transpose and M = 2/F1,

2.1 Inverse problem for the heat equation

One example of the inverse heat conduction problem is the estimation of the heating
history experienced by a shuttle or missile reentering the earth’s atmosphere from
space. The heat flux at the heated surface is needed [3]. To estimate the surface heat
flux history, it is necessary to have a mathematical model of the heat transfer process.
For example, it is assumed that the section of the skin is of a single material, homo-
geneous and isotropic, and that it closely approximates a flat plate. Then a possible
mathematical model for the temperature in the plate is a one dimensional inverse heat
conduction problem as follows, [3]:
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U (x, 1) = uyy(x,1), 0<x<l1, O0<t<ty, (2.6a)
u(x,0) =ox), 0<x<l1, (2.6b)
u(0,1) = p(1), 0<t=<ty, (2.6¢)
u(l,tr) =q(@), 0<t<ty, (2.6d)

and the overspecified condition
u(a, 1) =g@), 0=<r1t=ty, (2.6¢e)

where 0 < a < 1 is a fixed point, ¢ (x) is a continuous known function, g(¢) and g (¢)
are infinitely differentiable known functions and 7 represents the final time, while
the function p(¢) is unknown which remains to be determined from some interior
temperature measurements.

Now, let us divide the interval [0, #¢] into N equal parts of length At = tﬁf and
denote ty = (s —1)At, s = 1,2, ..., N. We assume that 1" can be expanded in terms
of Haar wavelets as, [12]

M
(1) =D by (x) = Cly Hy (x), 2.7)
n=1

where - and " mean differentiation with respect to 7 and x, respectively, the vector C L
is constant in each subinterval [fg, f54+1], s = 1,2,..., N.

Integrating formula (2.7) with respect to ¢ from # to ¢ and then twice with respect
to x from a to x, we obtain

u'(x,t) = (t — t;)CL Hy(x) +u” (x, 1), (2.8)
u(x,t) = (t — t,)Ch [ QmHm(x) — QuHy (@) — (x — a) Py Hy (a)]
+u(a,t) —u(a, ty) + (x —a)u'(a, t) —u'(a, t;))] +u(x, ty), (2.9)
i(x, 1) = C[OmHM(x) — QuHy(a) — (x — a) Py Hy(a)]
+i(a,t) + (x —a)i'(a, t). (2.10)

By using the boundary conditions, we obtain
ula, t;) = g(ts), u(l, 1) =q(t;), ala, 1) =g'®), a(l,1)=q ).

Putting x = 1 in (2.9) and (2.10), we obtain

W (a.t) —u'(a.1;) = %CAE[QMHM(D — QuHu(@) — (1 — a) Py Hy (@)]

u,t) —u(l, t5)) + !

+l—a 1—a

(u(a, ty) —u(a, 1)),
@2.11)
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./ 1
' (a,t) = 7

—a

1
Li(1, 1) — i(a, )] — Chy [m OmHu(1)

1
—EQMHM(G) - PMHM((Z):| . (2.12)

Substituting Egs. (2.11) and (2.12) into Egs. (2.9) and (2.10), and discretizing the
results by assuming x — x;, ¢t — fts41, we obtain

W (xp, to41) = (1 — 1) Chp Hyr (xp) + u” (x1, 1), (2.13)

X —a x;—1
u(xy, tsp1) = (tsp1 — 15)Cl |:QMHM(xl) - EPMF+ mQMHM(a)}

x— 1 X —a
Fu(xy, fy) + T2 [g(ts) — gts+ )] + ——[q(ts+1) — q ()],
—a 1—a

(2.14)
. T X —a x;— 1
31, 1) = Cly | Quu () = T——PuF + 5 Qu Hy (@)
— X X —a
+——[g'(ts+ D1 + ——[q" (ts41)]. (2.15)
l1—a l1—a
where the vector F is defined as
F=[1,0,...,0]7
N —
(M—1)
and H, P, Q are obtained from (2.1)—(2.3).
In the following scheme
(g, ts1) = u” (x, ty41), (2.16)

which leads us from the time layer #; to 7,4 is used where x; is collocation point.
Substituting (2.13) and (2.15) into (2.16), we obtain

T X —a x—1
Cuy | OmHp(xp) — EPMF + - OmHy(a) — AtHy (xp)

X —a

1 —x —
= u”()C[, Is) — —g/(ts+1) - q/(ts+l)9 (2.17)
1—a 1—a

Thus the linear system corresponding to the wavelet coefficient CL can be
expressed as

A® = B. (2.18)

The Matrix A is ill-conditioned. On the other hand, as g(¢) is affected by mea-
surement errors, the estimate of ® by (2.18) will be unstable so that the Tikhonov
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regularization method must be used to control this measurement errors. The Tikhonov
regularized solution ([10,17,27] and [28]) to the system of linear algebraic equation
(2.18) is given by

Fo(®) =[AO — B|} +a||RVO3.

On the case of the zeroth-, first-, and second-order Tikhonov regularization method
the matrix R®), for s = 0, 1, 2, is given by, see e.g. [18]:

R(O) — IM]XM] ERMIXMI,
-11 ...0 00O
0 -11...00
RO = : : : : : | eRM-DxM
0 0...—-110
0 0 ... 0 —-11
1-210. 00
01 -210 0
R®=1:: : : : | er®=2xM
00 1-2 10
00 01 21

where M1 = (y + 1) x (t+ 1).
Therefore, we obtain the Tikhonov regularized solution of the regularized
equation as

—1
O = [ATA +a(R(S))TR(S)] ATB.

In our computation, we use the GCV scheme to determine a suitable value of o
([8,9] and [29]).
2.2 Inverse problem for the wave equation

In this section, we consider the following inverse problem for the wave equation in
the dimensionless form

U (X, 1) = uyy(x, 1), O0<x<1, O0<t<ty, (2.19a)
u(x,0) = fi(x), 0<x<1, (2.19b)
ur(x,0) = f2(x), 0<x<1, (2.19¢)
u(0,1) = p(), 0=<t=<ty, (2.19d)
u(l, 1) = q(@), 0<rt=<ty, (2.19)
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and the overspecified condition

ua,t)y=g@), 0=<t=<ty, (2.19f)

where 0 < a < 11is afixed point, f(x) is a continuous known function, g(¢) and ¢(¢)
are infinitely differentiable known functions and 7 represents the final time; while
the function p(¢) is unknown which remains to be determined from some interior
temperature measurements.

Now, let us divide the interval [0, z¢] into N equal parts of length Az = % and
denote t; = (s — 1)Az, s = 1,2, ..., N. We assume by Remark 1 that ii” can be
expanded in terms of 4, -functions as,

M
ii"(x, 1) = D cs(nhy(x) = Chy Hy (x), (2.20)
n=1
where - = 9/07 and " = 9/9x and the vector CAT,I is constant in each subinterval

[Zs, ts+1]7 s=1,2,...,N.
Integrating formula (2.20) twice with respect to ¢ from #; to ¢ and then twice with
respect to x from a to x, we obtain

1
u'(x,1) = E(ﬂ + 12 = 211,)CT Hyy (x) + u” (x, 1) + (1 — t5)id" (x, 1), (2.21)

ii(x,1) = CLIOMHM(x) — QuHM(a) — (x — a) Py Hy(a)]
+ii(a,t) + (x —a)ii'(a, 1), (2.22)
1

u(x, 1) = 502 + 12 = 2t1)CHIQMHM(x) — QuHy (@) — (x — a) Py Hy(a)]

Fulx, tg) + (@t —t)ulx, ty) +ula, t) —u(a, tg) — (t — ts)’/‘t(as Is)
+(x—a)u'(a,t) —u'(a,t;) — (t —t)it (a, t,)]. (2.23)

By using the boundary conditions, we obtain

u(l, ty) = q(ty), ula,ty) = g(ts),
u(l, t) = q/(ts)v u(a, ty) = g/(ts),
i(1,1) =q" @), ii(a, 1) =g"(1).
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Putting x = 1 in (2.22) and (2.23), we obtain
vy T 1
i'(a, 1) =Cy [mQMHM(l)
1 1
—mQMHM(a) + PMHM(a)] + m[q//(l) -¢"®], (224

1
u'(a,0) —u'(a,t5) — (t — t)i (a, ty) = T—4® —q)l

1
T80 =8+ 7 ) —q'(1;)]

1
1
+— (t + 12 — 211, )CM[ QMHM(l)— a—QMHM(a)+PMHM(a)i|
(2.25)

Substituting (2.24) and (2.25) into (2.22) and (2.23), and discretizing the results by
assuming x — x;, t — ;4] we obtain

" 1 2 2 T
u” (xg, ts—i—l) = E(ts.;-l + 1t — 2[s+lts)CMHM(xl)

" (x1, t5) + (1541 — )" (x, 1), (2.26)
W (xp, ty41) = (g1 — 1) CarHy () + i (x, 1), (2.27)
. 1—x X —a
L teq1) = CTL
i (xg, ts41) M[ P p— :|
l—x , Xp—a
+——8" (ts11) + ——q (s 1), (2.28)
1—a 1—a

1o 2 T -
u(xy, tyy1) = E(ts-l,-l +1; = 2t51t5)Chy | O Hy (1) + mQMHM(a)

X —a .
+ a—1 PMF:| +u(xg, t) + (ts+1 — to)u(xg, ty)
X —a
11— ) —g(tsr1)] + —[Q(ts+l) —q ()]
+“f [ — g (1) — (1 — a)q (1)1, (2.29)
w(xy, ts41) = (tp1 — t)C oy |:QMHM(XI) + —QMHM(a) + — PMF]

1— —
i (x, 1) + l—l[g/mm — (1)1 + l—[q/(rsm —q ).
—a 1—a
(2.30)

where the vector F is defined as
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and H, P and Q are obtained by (2.1), (2.2) and (2.3). In the following scheme
i(xy, ts41) = u” (xq, t5+1), (2.31)

which leads us from the time layer f to 7,4 is used where x; is collocation point.
Substituting Eqs. (2.26) and (2.28) into Eq. (2.31), we obtain

X —a
Py F
a—1

T 1 —x;
Cy QMHM(XZ)—FHQMHM(CI)—F

1 .
—z(fs2+1 +1 - 2ts+1ts)HM(xl)i| =u"(x1, t5) + Arid" (xy, 15)

1—x X —a
g (tr1) — ——q" (ts11). (2.32)
1—a 1—a

From the formula (2.32) the wavelet coefficient CAT,, can be calculated.
In matrix form, the wavelet coefficient C,, can be obtained from solving the fol-
lowing matrix equation

AL =b. (2.33)

Similarly, the Tikhonov regularized solution to the system of linear algebraic equation
(2.18) is given by (see e.g. [10,17] and [27])

—1
g = [ATA + a(R(s))TR(S)] ATp.

Table 1 The comparison between exact and Tikhonov solutions of p(#) with noisy data

t Exact Oth order Tikhonov 1st order Tikhonov 2nd order Tikhonov
0.01 1.921879 1.919898 1.922970 1.922109
0.02 1.847433 1.844146 1.848860 1.847618
0.1 1.370640 1.361024 1.370366 1.369286
0.11 1.324373 1.314032 1.323874 1.322876
0.5 1.020671 0.991988 1.017550 1.017308
0.51 1.040357 1.011336 1.037165 1.036948
0.8 2.001524 1.962028 1.998064 1.997799
0.81 2.046628 2.006747 2.043149 2.042928
0.9 2.484647 2.441109 2.481159 2.480956
091 2.536805 2.492833 2.533312 2.533111
1 3.036631 2.988876 3.033070 3.033044
S 3.053e—002 2.875e—003 3.129e—003
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Table 2 The comparison between exact and Tikhonov solutions of #(0.2, t) with noisy data

t Exact Oth order Tikhonov 1st order Tikhonov 2nd order Tikhonov
0.01 2.520089 2.521307 2.519971 2.520238
0.02 2.423450 2.425538 2.423526 2.423825
0.1 1.799281 1.806399 1.801775 1.801910
0.11 1.737893 1.745568 1.740668 1.740750
0.5 1.165108 1.186168 1.171230 1.171247
0.51 1.182700 1.203986 1.188859 1.188836
0.8 2.123236 2.151417 2.129903 2.129798
0.81 2.168547 2.196991 2.175235 2.175103
0.9 2.610014 2.640830 2.616710 2.616683
0.91 2.662706 2.693775 2.669420 2.669383
1 3.168405 3.201933 3.175197 3.175122
S 2.199e—002 5.703e—003 5.652e—003

Table 3 The comparison between exact and Tikhonov solutions of u(x, 0.5) with noisy data

t Exact Oth order Tikhonov 1st order Tikhonov 2nd order Tikhonov
0 1.020671 0.991984 1.017502 1.017258
0.1 1.084074 1.084074 1.084074 1.084074
0.2 1.165108 1.186201 1.171323 1.171244
0.3 1.263251 1.291492 1.271317 1.270897
0.4 1.379145 1.411504 1.389255 1.388597
0.5 1.514630 1.549149 1.526990 1.526255
0.6 1.672755 1.704997 1.684498 1.683785
0.7 1.857762 1.884610 1.866750 1.866089
0.8 2.075052 2.098842 2.084764 2.084199
0.9 2.331120 2.342195 2.334015 2.333667
1 2.633481 2.633481 2.633481 2.633481
S 2.598e—002 8.307e—003 7.831e—003

3 Numerical results and discussion

In this section, we are going to study numerically the inverse problems (2.6) and (2.19)
with the unknown boundary condition. The main aim here is to show the applicability
of the present method, described in Sect. 2, for solving the inverse problems (2.6) and
(2.19). As expected the inverse problems are ill-posed and therefore it is necessary to
investigate the stability of the present method by giving a test problem.

Remark 2 In an inverse problem there are two sources of error in the estimation; the

first source is the unavoidable bias deviation, and the second source of error is the
variance due to the amplification of measurement errors, [6].
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M?

Wi

P Exact™® Tikhonov oth

o 01 02 03 04 05 06 07 08 09 1
t

Fig. 1 Difference between the p(f)gxact and p(#)oth order Tikhonov ©f problem (2.6) with noisy data

P() Exact™P® Tikhonov 1th

) . . . . . . . . .

Fig. 2 Difference between the p()gxact and p(f)1st order Tikhonoy Of problem (2.6) with noisy data

Therefore, we compare exact and approximate solutions by considering total error
S defined by

1 N 2
S D — )2
S = N_lg@l )| . 3.1)
1=

where N, & and & are the number of estimated values, the estimated values and the
exact values, respectively.

Example 3.1 In this example we solve the problem (2.6) with given data,
. L4
u(x,0) = 2(sin(2x) + cos(2x)) + Zx , 0<x<1,

1
u(l, t) = 2e_4’(sin2+cos2)+3 (t2+t+ E)’ 0<t=<ty,
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P Exact™P® Tiknonov 2th

Fig. 3 Difference between the p()gxact and p(f)2nd order Tikhonov Of problem (2.6) with noisy data

-0.005

-0.01

-0.015

-0.02

-0.025

-0.03 )

%

u(0.2,4) Exact_u(o'z’t) Tikhonov Oth

%
=
0 01 02 03 04 05 06 07 08 09 1

t

Fig. 4 Difference between the u(0.2, t)gxact and u(0.2, #)oth order Tikhonov Of problem (2.6) with noisy
data

0.0001
u(0.1,1) = 2e*4’(sin0.2 +c0s0.2) +3 (tz + (0.01)t + B ) , 0<t=ty.
The exact solution of this problem is
1
u(x, ) = 2 (sin(2x) + cos(2x)) + 3 (t2 +1x? + EX4) )

Our results obtained for p(¢) = u(0,t), u(0.2,t) and u(x,0.5) when ¢ty = 1, At =

0.01 and Ax = le with noisy data (noisy data = input data + (0.01)rand(1)) are pre-
sented in Tables 1, 2 and 3 and Figs. 1,2, 3,4,5,6,7, 8 and 9.
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u(0-2,1) Exact_u(o'z’t) Tikhonov 1th

Fig. 5 Difference between the u(0.2, t)gxact and u(0.2, #)1st order Tikhonov ©f problem (2.6) with noisy
data

u(0.2,Y) Exact_u(o'z’t) Tikhonov 2th

Fig. 6 Difference between the u(0.2, 1)gxact and u(0.2, 1)2nd order Tikhonov ©f problem (2.6) with noisy
data

£ 0.03%¢ . . . . . . : : :
o
: [—0]]
g o002}
<
=
E o001} 1
o
) 0 [
2 L
7 -001f 1
B
g | 4
3 -0.02
S 003
X
S —0.04 : : :

0O 01 02 03 04 05 06 07 08 09 1
X

Fig. 7 Difference between the u(x, 0.5)gxact and u(x, 0.5)0th order Tikhonov Of problem (2.6) with noisy
data
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x10"

U(%,0-5) £y a4 (0-5) 1iionov 1th
&

_15 . . . . . . . . .
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Fig. 8 Difference between the u(x, 0.5)gxact and u(x, 0.5)1st order Tikhonov Of problem (2.6) with noisy
data

u(x,0.5) Exact_u(x’o's) Tikhonov 2th
&

0 01 02 03 04 05 06 07 08 09 1

Fig. 9 Difference between the u(x, 0.5)gxact and u(x, 0.5)2nd order Tikhonov Of problem (2.6) with noisy
data

Example 3.2 In this example we solve the problem (2.19) with given data,
u(x,0) =e *+x%, 0<x<l1,
u(x,0) = —e " +x°, 0<x<1,
u(l,y=e " hr 4P+ 41, 0<1 <1y,
w(0.1,1) = ¢ 1= £ (0.001)r + (0.1)r> + 1> +0.01, 0<r <1y
The exact solution of this problem is

u(x,t) =e ¥+ 3t 4+ x> + 12 + 1%
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Table 4 The comparison between exact and Tikhonov solutions of p(#) with noisy data

t Exact Oth order Tikhonov 1st order Tikhonov 2nd order Tikhonov
0.01 0.990150 0.990149 0.990150 0.990150
0.02 0.980599 0.980596 0.980599 0.980598
0.1 0.914837 0.914780 0.914836 0.914825
0.11 0.907934 0.907865 0.907932 0.907918
0.5 0.856531 0.855188 0.856137 0.856094
0.51 0.860596 0.859197 0.860186 0.860145
0.8 1.089329 1.085894 1.088756 1.088546
0.81 1.100958 1.097442 1.100387 1.100166
0.9 1.216570 1.212314 1.216003 1.215702
0.91 1.230624 1.226286 1.230056 1.229749
1 1.367879 1.362790 1.367285 1.366945
S 2.402e—003 4.086e—004 5.448e—004

Table S The comparison between exact and Tikhonov solutions of (0.2, t) with noisy data

t Exact Oth order Tikhonov 1st order Tikhonov 2nd order Tikhonov
0.01 0.850764 0.850765 0.850765 0.850765
0.02 0.843080 0.843082 0.843081 0.843081
0.1 0.791818 0.791850 0.791824 0.791831
0.11 0.786693 0.786731 0.786701 0.786708
0.5 0.815585 0.816291 0.815888 0.815874
0.51 0.822354 0.823091 0.822669 0.822650
0.8 1.156679 1.158589 1.157098 1.157077
0.81 1.173087 1.175043 1.173501 1.173487
0.9 1.335871 1.338252 1.336227 1.336287
0.91 1.355653 1.358082 1.356002 1.356071
1 1.549194 1.552046 1.549486 1.549625
S 1.332e—003 2.907e—004 2.910e—004

Our results obtained for (0, ¢), u(0.2, ¢) and u(x, t) when ty = 1, At = 0.01 and

Ax = ‘—11 with noisy data (noisy data = input data+ (0.01)rand(1)) are presented in
Tables 4, 5 and 6 and Figs. 10, 11, 12, 13, 14, 15, 16, 17 and 18.

4 Conclusion

A numerical method, to estimate unknown boundary condition is proposed for two
types of the inverse problems, the heat problem (2.6) and the wave problem (2.19), by
using Haar basis method. The following results are obtained.

1. The present study, successfully applies the numerical method to inverse problems.
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Table 6 The comparison between exact and Tikhonov solutions of u(x, 0.5) with noisy data

t Exact Oth order Tikhonov 1st order Tikhonov 2nd order Tikhonov
0 0.856531 0.855211 0.856114 0.856076
0.1 0.821812 0.821812 0.821812 0.821812
0.2 0.815585 0.816278 0.815838 0.815847
0.3 0.840329 0.841219 0.840752 0.840744
0.4 0.898570 0.899482 0.899091 0.899071
0.5 0.992879 0.993755 0.993490 0.993469
0.6 1.125871 1.126669 1.126523 1.126504
0.7 1.300194 1.300887 1.300791 1.300772
0.8 1.518532 1.519118 1.519017 1.518998
0.9 1.783597 1.783947 1.783873 1.783860
1 2.098130 2.098130 2.098130 2.098130
S 7.696e—004 4.641e—004 4.545¢—004

P() Exact™P® Tiknonov oth

Fig. 10 Difference between the p(#)gxact and p(#)oth order Tikhonov Of problem (2.19) with noisy data

2. Numerical results show that an excellent estimation can be obtained within a
couple of minutes CPU time at pentium(R) 4 CPU 3.20 GHz.

3. The present method has been found stable with respect to small perturbation in
the input data.

4. Numerical results show that our approximations of unknown function using the
(1stand 2nd order) Tikhonov regularization combined with the Haar basis method,
are more accurate than those obtained by the Oth order Tikhonov regularization
with noisy data.
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p(t) Exact_p(t) Tikhonov 1th

Fig. 11 Difference between the p(#)gxact and p(#)1st order Tikhonov Of problem (2.19) with noisy data

x10°

P() Exact™P® Tiknonov 2th

Fig. 12 Difference between the p(#)gxact and p(#)2nd order Tikhonov Of problem (2.19) with noisy data
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Fig. 13 Difference between the u(0.2, )gxact and u(0.2, £)oth order Tikhonov Of problem (2.19) with noisy
data
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u(0.2,) Exact—u(0.2,t) Tikhonov 1th

Fig. 14 Difference between the 1(0.2, t)gxact and #(0.2, 1)1t order Tikhonov Of problem (2.19) with noisy
data

u(0.2,) Exact_u(o'z’t) Tikhonov 2th

Fig. 15 Difference between the 1(0.2, t)gxact and u(0.2, #)2nd order Tikhonov Of problem (2.19) with noisy
data
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Fig. 16 Difference between the u(x, 0.5)gxact and u(x, 0.5)0th order Tikhonov Of problem (2.19) with noisy
data
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Fig. 17 Difference between the u(x, 0.5)gxact and u(x, 0.5) 15t order Tikhonov ©f problem (2.19) with noisy

data
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Fig. 18 Difference between the u(x, 0.5)gxact and u(x, 0.5)2nd orderTikhonov ©f problem (2.19) with noisy

data
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